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Some properties of the entropy in the natural time
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We show that the entrop$, defined asS=(y In x)—{x)In{x) [Phys. Rev. E68, 031106(2003] where y
stands for the natural timgPhys. Rev. E66, 011902(2002], exhibits positivity and concavity as well as
stability or experimental robustness. Furthermore, the distinction between the seismic electric signal activities
and “artificial” noises, based on the classification of tHiwalues, is lost when studying the time-reversed
signals. This reveals the profound importance of consideringttbe) time arrow.
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Among the many generalizations of the well known S={(xInx)=(In{x), (1)
Boltzmann-Gibbs-Shannon (BGS) entropy  Sges

=-k={L,p, In p;, one finds the Renyi entroffiL], the Tsallis  \here y stands for the natural time. The natural time is in-
entropy (2], the Abe entropyf3], the Landsberg-Vedral en- quced[19,20 by ascribing to thekth pulse of an electric
tropy [4], the Kaniadakis entropy5,6], and the escortor  gjgna| consisting ofN pulses the valuey=k/N and the
normalized Tsallisentropy[7]. Much attention has been fo- analysis is made in terms of the couptla,Q,), whereQ,

cused recently on the Tsallis entropy, which is currently CON<, o o1 the duration of theh pulse. In Ref[18], one can
sidered as a milestone of the so-called nonextensive statisf}-

cal mechanics. An entropic functionab[p], where i_nd examples of how electric_signe(lsonsisting of pulses of
{Pliz1o_ IS a probability distribution for a given system, dichotomous natujeare read in the natural Eme, |.'§pk or
should beconcave(e.g., pp. 52-53 of Ref8]). For the cen- POX) VErsUS xi or x, respectively, where=Qu/2-1Qn.

tral importance of this concavity on both the Oth and the 2nd! "€S€ examples include seismic electric sig&#3 activi-
principle of thermodynamics; see, for example, Rf]. €S, which are recorded well before major earthquakes, and
Thus, an investigation of theoncavityof the aforementioned “artificial” noise (AN), which is emitted from nearby artifi-
entropies has been made and the results are as follows: BG&al electrical sources. Excerpts of more recent examples,
Tsallis, Abe, and Kaniadakis entropy are concéeg., Ref. i€, collected durlng the last few years, are depicted in Fig.
[10] and references therginthe Renyi entropy and the 1. Some properties of the entrof/have been already pre-
Landsberg-Vedral entropy are concave only fox§<1, sented in the Appendix of Ref21]. It is one of the aimgan
while the escort entropyl1l] is concave only forg>1,

whereq stands for the so called entropic index, i.e., the ex- 35

ponentq in the Tsallis entropysl[p]=(2{\‘:1pﬂ—1)/(1—q). 30 EAANLMPAFTRY T1
Another important issue that has recently attracted strong 25 MWLt C1
interest is thestability or experimental robustness of these 20 Pl TR e e PL
entropies, e.g., see Ref®,10,12-18. In particular, this in- § 15 Prar il P2
vestigation is usually made in terms of an early suggestion T 10 oo fefilSLL B
by Lesche17] (Lesche stability criterion which states that T 5 Lt WL ] 7
an entropic measure is stable if its change upon an arbitrarily B 0 PO W ns
small deformation of the distributiofrepresenting fluctua- L W AT N
tions of experimental datfd 2]) remains small. By means of g -10 FUAFURAA e LAY 10
this stability criterion, Leschgl7] showed that the BGS en- g s UM Ao nLL

tropy is stable, while the Renyi entropy is unstable. Abe later -20 Pl rf poipid ni2
proved[13] that the Tsallis entropy is also stable, while the -25 P feed nis
escort entropy is not. Finally, the stability was also shown for -30 P/ ANMAMNLLAY nia
the Kaniadakis entropy12,14], while it became cleaf11] -35 :
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that the Landsberg-Vedral entropy does not obey this crite- o
t(s

rion. To sum up, the BGS, Tsallis, Abe, and Kaniadakis en-
.trOples(beyondeSItMty €.g., see Ref10)) exhibit concav- FIG. 1. Electric signals recordd¢dampling raté ;=1 Hz) dur-
ity and are Lesche stable._ . ing the last few years: Excerpts of five SES activities labeled T1,
Recently_, th_e ent.rop)S in natural time has been sug- C1, P1, P2, E1 and eight sets of artificial noise labeled n7 to n14.
gested, which is defined 438,19 The electric fieldE is usually measured in mV/km, but here we
present these signals in normalized units, i.e., by substracting the
mean valueu and dividing by the standard deviatien All signals
*Electronic address: pvaro@otenet.gr for the sake of clarity are displaced vertically by constant factors.
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additional one will be mentioned belgwf the present paper n n

to investigate whether the entrof@/exhibits the previously F(E )\ka> < E MF (X, (2)
mentioned important properties for the entropic measures, k=1 k=1

.e., positivity, concavity, and stabilityin the sense of Le- \yhere Osh <1, Ny+\,+---+\,=1 and eachx, < [a,b].
sche’s criterion Aspects supporting the view that, in time- ysing \,=p,, x=x(=k/N) and F(x)=f(x), Jensen’s in-
series analysis, the use of natural time—compared to othefguality yields

time domains—reduces uncertainty and extracts the maxi-

mum information possible, despite their importance, are be- QoIn(x) < (x In x), 3
yond the scope of the present work and will be developetnd hence
elsewhere.

SES activities and AN may look similar, but it has been S=(xIn x) - (In{x) = 0. (4)
found [18] that the entropyS can distinguish them as fol- We now turn to the proof of the concavity & with re-

lows: If §, (~0.0966 denotes the entropy of a uniform dis- spect top,. Using the properties of the average natural time
tribution (aS it was defined in Ref$18,19,22), the Svalues [1Q’ZJJ <X>:Er,'\rl1:1(m/N)pm a direct differentiation of the
of the SES activities are smaller th&p while those of the  equation

AN are larger thar(or equal t9 S,. If the correspondings

values do not markedly differ fror§,, the distinction should S= % k | k )
be better made by means of the complexity measures intro- it Npk n NEN (I/N)p
duced in Ref[23] that quantify the change of the fluctua- 1=1 '
tions &S at different length scales. (which results from a combination of EqeA12)—(A15) of

It is currently believed(see Ref.[24] and references Ref.[21]) with respect top, and p, leads to
therein that, in general, there is a relation between the irre- 25 Ik

versibility of thermodynamiqrocesses as expressed by the =-
breaking of time-reversal symmetry, and the entropy produc- IPkIPy N“(x)
tion in such processes. An essential characteristic of thesgjnce( ) is always positive, we find that the right side of Eq.
processes is that the time-reversal invariance of the mlcro(6

is always negative. This shoW30] the concavity of the
scopic dynamics is apparently brokgd#]. It means that out en)tropyS vgith regspect top,. WS0) y

of equilibrium a particular sequence of macrostates and its Following Ref.[12], Lesche stability implies, as men-
time reversal can have very different plausibilithis, basi-  tioned, that for two slightly ~different  distributions
cally, must be the reason for the positivity of entropy pro-fpy._ ., and {p/}-1,. n the corresponding entropic
duction[24]). This, since both SES activities and AN are out measuresS[p] and 3[p'] do not change drastically. One
of equilibrium processes, motivated us to investigate the folshoyld considef31] that 3[p], wherep e (R*)N, taken as a
lowing point: Is the aforementione8 criterion (i.e., S<S,  function ofN, converges to a uniformly continuous function
for SES, whileS=§, for AN) for the distinction between in a uniform manner, i.e[] >0 there existss, (which de-
SES activities and AN still applicable, upon calculating 81 pendsonly on €) such thatOp,p’ e (R*)N and for everyN
values after a time reversal of the original time series? The: z+

answer to this question constitutes an additional aim of the )
present paper. We find that under time revef3& not in- lp-p'll < 8.0 M
variant and the aforemention&icriterion is not valid. We imax
note that_, in general, the propqsal of the use of fractiona i, the metric|p||==N,|pi| and= . the maximum value of
time derivatives for subdiffussive transport also touchesz

upon fundamental principles such as locality, irreversibility, In our case ofS, there is at least one distribution

and invariance under time translatifi2b] because fractional {Piti=1.2... n» the constant onf21] p;=1/N, for which, for all

derivatives are nonlocal operators that are not invariant uny “the corresponding entrog is given by

der time reversal. These issues, which are generally avoided N N N

[25] in relevant proposals based upon purely mathematical or N=S k In(5> - k (S 18 ®)

heuristic aspects, were discussed in the context of long time S(N) = N2 \N/ & N? = N2

limits and coarse graininfR6]. It was then found26]; see

also[25] and references thergitthat fractional derivatives Which reaches a well defined finite and positive value in the

with orders between 0 and 1 may appear, in general, as ifimit lim y_.S(N)=8,=(In 2)/2-1/4~0.0966. By virtue of

finitesimal generators of a coarse grained macroscopic timéhe fact thatS(N) is monotonically increasing with respect

evolution. to N, we have that{=(5In2-31In3/4=S.(2)<S(N).
We first prove the positivity ofS. Since the function SinceX = S(N)=¢0 1/{=1/3 5 We can replac& .«

f(x)={xInxOx e (0,1],0 if x=0} is convex(see p. 92 of in the relation(7) by ¢.

(6)

<

€, ()

k=1

Ref. [27]), we consider Jensen’s inequalit28] (see also We now consider that the functiorf(x)={xInxOx
Sec. 12.411 of Ref29]), which states that iF(x) is a con- < (0,1],0 if x=0} is a continuous function defined on the
vex function on the intervdla,b], then compact sef0,1], and hence it is uniformly continuous. This
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TABLE I. The values ofS, k;, S_ for the SES activities and AN

|f(x)|<1/e. Moreover, uniform continuity implies that there analyzed in Ref{18] as well as those depicted in Fig. 1.

exists 8;(e) >0 so that for everk,y [0, 1]

Signal S K1 S
x-y|<é8(e) T [xInx-ylny| < %g 9) K1 0.067+0.003  0.063+0.003  0.074+0.003
K2 0.081+0.003  0.078+0.004  0.103+0.003
Now the proof of the Lesche stability & proceeds as A 0.070+0.008  0.068+0.00%4  0.084+0.008
follqws. Indeed, for eve_rye> 0, we can considerd(e) U 0.092+0.004 0.071+0.004 0.071+0.004
=minfee/2,8,(¢)] so that ifjp-p’[|< &(e) we have T1 0.088+0.007  0.084+0.007  0.098+0.010
C1 0.083+0.004 0.074+0.002 0.080+0.004
’ Tﬂx pk) In ~—xInx+ylny P1 0.087+0.004 0.075+£0.004 0.081+0.004
P2 0.088+0.003 0.071+£0.005 0.072+0.015
E (o pk)E 5 .\ XInx-yliny] E1l 0.087+0.007 0.077+0.017 0.081+0.007
P4 NN ¢ ’ ni 0.143+0.008  0.115+0.003  0.127+0.004
(10) n2 0.103+0.003 0.093+0.003 0.122+0.003
where x=3I (k/N)p, and y=31 (k/N)pL. We now take n3 0.117+0.010  0.100+0.008  0.118+0.010
into accoum that n4 0.106+0.010  0.100+0.013  0.138+0.010
N N N n5 0.091+0.011 0.086+0.007 0.120+0.011
x-yl= |3 k( “l =3 k pe-pl = pe—pll né 0.102+0.007 ~ 0.084+0.004  0.095+0.007
=N =N = n7 0.116+0.005  0.085:0.005  0.083+0.005
<86 =< 51(6) (11) n8 0.117+0.004 0.095+0.007 0.099+0.005
n9 0.110+0.010 0.091+0.005 0.095+0.010
and thereforgsee condition9)] n10 0.112+0.005 0.087+0.007 0.087+0.006
|X Inx-yln y| € nll 0.122+0.012 0.088+0.007 0.079+0.012
f < 5; (12) nl2 0.104+0.005 0.094+0.005 0.103+0.009
nl3 0.124+0.007 0.084+0.007 0.077+0.008
the consideration of which turns inequaliti0) to (for more ni4 0.124+0.005 0.087+0.005 0.081+0.007
details seg¢31))
*From Ref.[18].
1 N k €
‘ s < ZE [P = Pkl I N’ 5 SES activities an®z S, for AN, this does not hold, in gen-
max k=1 eral, for theS. values. This is so, since for all the SES ac-
EE— P pil tivities (with the probable exception of K2ve find that the
< =1 + € @ +S<e S values are smaller thafor equal t9 S,, but for AN no
le 2 e 2 ' commonbehaviour could be found, becau&e is either

(13) smaller or larger thaig,. In other words, no distinction be-
tween SES activities and AN can be achieved on the basis of
which completes the proof. S values alone. This means the following, if we recall that
We now investigate th& value deduced upon analyzing the S value takes into account the sequential order of pulses
in the natural time domain the time series of SES activitiesand hence captures elements of the dynamics hidden in this
and AN obtained upon considering the time reveaf the  order[21,23. Only when considering thérue) time arrow
original time series;7py=pn-x+1- This, for the sake of con- (i.e., analyzing in the natural time domain the time series as
venience, will be designated I8 (in contrast to theSvalue it was actually recorded in natyrean theS value pinpoint
which results from the analysis of the original time sexies the difference in the dynamics between these two groups of
Table | presents thBandS. values of the SES activities and electric signals. Recall that the SES activities are character-
AN investigated in Ref[18] as well as of the signals de- ized bycritical dynamics and hence exhibit infinitely ranged
picted in Fig. 1(the date as well as the station at which eachiong range correlations, while in AN the intensity of the
of the latter signals has been recorded can be found in Relfong-range correlations is markedly weak&B]. Numerical
[31]). For the sake of completeness, we also give in Table ktudies ofcritical models do show that bots and S_ are
the value of the variance;=(x*—-(x)? obtained in each smaller thanS, and will be published elsewhere.
case(note thatx; does not change upon time reversal—since We now comment on the aforemenionted point that, in
it results from a power spectrufi20]l—in a similar fashion contrast toS, the variancec,; as well as the generalized vari-
as the exponents obtained from detrended fluctuation analynceopg, oOf the DFA technique or th&/S function (Hurst
sis[32,33 (DFA), and Hurst analysig34]; see also beloyy  analysi$ do not change upon time reversal. In other words,
An inspection of this table reveals the following. Although only S does satisfy the condition to be “causal” in the fol-
the Svalues are classified as stated above, §&. 5, for the  lowing sense. When studying a dynamical system evolving
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in time [35], the “causality” of an operator describing this need an artifical subdivision into boye$he extent to which
evolution assures that the values assumed by the operator,the DMA, as well as a more recent approafBs]—
each time instant, depend solely on the past values of thgotivated by the DMA—that is based on the analysis of
system. This reflects that a “causal” operator is able to repg|ysters formed by the moving average of a long-range cor-
resent the evolution of the system according to t18€) | o|51eq time series, may reveal the differences arising in the

time arrow. The “causality” of an operator has the following fime series of the SES activities and AN due to time reveral
two consequences. First, the operator can represent a rea R art
currently under detailed investigation.

physical system evolving in time. Second, the operator caft h hibi L
reveal the differences arising upon time reveral of the series. " SUmmary, the entropg does exhibit positivity, concav-

In order to overcome this “lack of causality” of DFA, an ity and Lesche stability. Interestingly, it also shows a break-
alternative approach termed the detrending moving averag@d of the time-reversal symmetry and can classify similar
(DMA) has been suggestd®@6], motivated by an earlier looking electric signals of different dynamiosly when ana-
study[37]. The DMA has been defined in terms of a gener-lyzing their original(and not the time-reversgtime series.

alized variance, analogously to the DFA, with the important ) ) )
difference of being able to be operated “causallie., in Thanks are due to Professor Sumiyoshi Abe for drawing

real time and continuously(since the time series does not OUr attention to the importance of proving tBeoncavity.
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