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We show that the entropyS, defined asS;kx ln xl−kxllnkxl fPhys. Rev. E68, 031106s2003dg wherex

stands for the natural timefPhys. Rev. E66, 011902s2002dg, exhibits positivity and concavity as well as
stability or experimental robustness. Furthermore, the distinction between the seismic electric signal activities
and “artificial” noises, based on the classification of theirS values, is lost when studying the time-reversed
signals. This reveals the profound importance of considering thestrued time arrow.
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Among the many generalizations of the well known
Boltzmann-Gibbs-Shannon sBGSd entropy SBGS
=−koi=1

N pi ln pi, one finds the Renyi entropyf1g, the Tsallis
entropy f2g, the Abe entropyf3g, the Landsberg-Vedral en-
tropy f4g, the Kaniadakis entropyf5,6g, and the escortsor
normalized Tsallisd entropyf7g. Much attention has been fo-
cused recently on the Tsallis entropy, which is currently con-
sidered as a milestone of the so-called nonextensive statisti-
cal mechanics. An entropic functionalSfpg, where
hpiji=1,2,. . .,N is a probability distribution for a given system,
should beconcavese.g., pp. 52–53 of Ref.f8gd. For the cen-
tral importance of this concavity on both the 0th and the 2nd
principle of thermodynamics; see, for example, Ref.f9g.
Thus, an investigation of theconcavityof the aforementioned
entropies has been made and the results are as follows: BGS,
Tsallis, Abe, and Kaniadakis entropy are concavese.g., Ref.
f10g and references thereind, the Renyi entropy and the
Landsberg-Vedral entropy are concave only for 0,q,1,
while the escort entropyf11g is concave only forq.1,
whereq stands for the so called entropic index, i.e., the ex-
ponent q in the Tsallis entropySqfpg=soi=1

N pi
q−1d / s1−qd.

Another important issue that has recently attracted strong
interest is thestability or experimental robustness of these
entropies, e.g., see Refs.f9,10,12–16g. In particular, this in-
vestigation is usually made in terms of an early suggestion
by Leschef17g sLesche stability criteriond, which states that
an entropic measure is stable if its change upon an arbitrarily
small deformation of the distributionsrepresenting fluctua-
tions of experimental dataf12gd remains small. By means of
this stability criterion, Leschef17g showed that the BGS en-
tropy is stable, while the Renyi entropy is unstable. Abe later
provedf13g that the Tsallis entropy is also stable, while the
escort entropy is not. Finally, the stability was also shown for
the Kaniadakis entropyf12,14g, while it became clearf11g
that the Landsberg-Vedral entropy does not obey this crite-
rion. To sum up, the BGS, Tsallis, Abe, and Kaniadakis en-
tropiessbeyondpositivity, e.g., see Ref.f10gd exhibit concav-
ity and are Lesche stable.

Recently, the entropyS in natural time has been sug-
gested, which is defined asf18,19g

S; kx ln xl − kxllnkxl, s1d

wherex stands for the natural time. The natural time is in-
troducedf19,20g by ascribing to thekth pulse of an electric
signal consisting ofN pulses the valuexk=k/N and the
analysis is made in terms of the couplesxk,Qkd, whereQk

stands for the duration of thekth pulse. In Ref.f18g, one can
find examples of how electric signalssconsisting of pulses of
dichotomous natured are read in the natural time, i.e.,pk or
psxd versus xk or x, respectively, wherepk=Qk/on=1

N Qn.
These examples include seismic electric signalsSESd activi-
ties, which are recorded well before major earthquakes, and
“artificial” noise sANd, which is emitted from nearby artifi-
cial electrical sources. Excerpts of more recent examples,
i.e., collected during the last few years, are depicted in Fig.
1. Some properties of the entropyS have been already pre-
sented in the Appendix of Ref.f21g. It is one of the aimssan
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FIG. 1. Electric signals recordedssampling ratefexpt=1 Hzd dur-
ing the last few years: Excerpts of five SES activities labeled T1,
C1, P1, P2, E1 and eight sets of artificial noise labeled n7 to n14.
The electric fieldE is usually measured in mV/km, but here we
present these signals in normalized units, i.e., by substracting the
mean valuem and dividing by the standard deviations. All signals
for the sake of clarity are displaced vertically by constant factors.
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additional one will be mentioned belowd of the present paper
to investigate whether the entropyS exhibits the previously
mentioned important properties for the entropic measures,
i.e., positivity, concavity, and stabilitysin the sense of Le-
sche’s criteriond. Aspects supporting the view that, in time-
series analysis, the use of natural time—compared to other
time domains—reduces uncertainty and extracts the maxi-
mum information possible, despite their importance, are be-
yond the scope of the present work and will be developed
elsewhere.

SES activities and AN may look similar, but it has been
found f18g that the entropyS can distinguish them as fol-
lows: If Su s<0.0966d denotes the entropy of a uniform dis-
tribution sas it was defined in Refs.f18,19,22gd, theS values
of the SES activities are smaller thanSu, while those of the
AN are larger thansor equal tod Su. If the correspondingS
values do not markedly differ fromSu, the distinction should
be better made by means of the complexity measures intro-
duced in Ref.f23g that quantify the change of the fluctua-
tions dS at different length scales.

It is currently believedssee Ref.f24g and references
thereind that, in general, there is a relation between the irre-
versibility of thermodynamicprocesses as expressed by the
breaking of time-reversal symmetry, and the entropy produc-
tion in such processes. An essential characteristic of these
processes is that the time-reversal invariance of the micro-
scopic dynamics is apparently brokenf24g. It means that out
of equilibrium a particular sequence of macrostates and its
time reversal can have very different plausibilitysthis, basi-
cally, must be the reason for the positivity of entropy pro-
ductionf24gd. This, since both SES activities and AN are out
of equilibrium processes, motivated us to investigate the fol-
lowing point: Is the aforementionedS criterion si.e., S,Su

for SES, whileSùSu for ANd for the distinction between
SES activities and AN still applicable, upon calculating theS
values after a time reversal of the original time series? The
answer to this question constitutes an additional aim of the
present paper. We find that under time reversalS is not in-
variant and the aforementionedS criterion is not valid. We
note that, in general, the proposal of the use of fractional
time derivatives for subdiffussive transport also touches
upon fundamental principles such as locality, irreversibility,
and invariance under time translationf25g because fractional
derivatives are nonlocal operators that are not invariant un-
der time reversal. These issues, which are generally avoided
f25g in relevant proposals based upon purely mathematical or
heuristic aspects, were discussed in the context of long time
limits and coarse grainingf26g. It was then foundsf26g; see
also f25g and references thereind that fractional derivatives
with orders between 0 and 1 may appear, in general, as in-
finitesimal generators of a coarse grained macroscopic time
evolution.

We first prove the positivity ofS. Since the function
fsxd=hx ln x∀xP s0,1g ,0 if x=0j is convex ssee p. 92 of
Ref. f27gd, we consider Jensen’s inequalityf28g ssee also
Sec. 12.411 of Ref.f29gd, which states that ifFsxd is a con-
vex function on the intervalfa,bg, then

FSo
k=1

n

lkxkD ø o
k=1

n

lkFsxkd, s2d

where 0ølkø1, l1+l2+¯ +ln=1 and eachxkP fa,bg.
Using lk=pk, xk=xks;k/Nd and Fsxd= fsxd, Jensen’s in-
equality yields

kxllnkxl ø kx ln xl, s3d

and hence

S; kx ln xl − kxllnkxl ù 0. s4d

We now turn to the proof of the concavity ofS with re-
spect topk. Using the properties of the average natural time
f19,21g kxl=om=1

N sm/Ndpm a direct differentiation of the
equation

S; o
k=1

N
k

N
pk lnS k

Nol=1

N
sl/Ndpl

D s5d

swhich results from a combination of Eqs.sA12d–sA15d of
Ref. f21gd with respect topk andpl leads to

]2S

]pk]pl
= −

lk

N2kxl
. s6d

Sincekxl is always positive, we find that the right side of Eq.
s6d is always negative. This showsf30g the concavity of the
entropyS with respect topk.

Following Ref. f12g, Lesche stability implies, as men-
tioned, that for two slightly different distributions
hpiji=1,2,. . .,N and hpi8ji=1,2,. . .,N, the corresponding entropic
measuresSfpg and Sfp8g do not change drastically. One
should considerf31g that Sfpg, wherepP sR+dN, taken as a
function of N, converges to a uniformly continuous function
in a uniform manner, i.e.,∀ e.0 there existsde swhich de-
pendsonly on ed such that∀p,p8P sR+dN and for everyN
PZ+

ip − p8i , de ⇒ USfpg − Sfp8g
Smax

U , e, s7d

with the metricipi=oi=1
N upiu andSmax the maximum value of

S.
In our case of S, there is at least one distribution

hpiji=1,2,. . .,N, the constant onef21g pi =1/N, for which, for all
N, the corresponding entropySc is given by

ScsNd = o
k=1

N
k

N2 lnS k

N
D − o

k=1

N
k

N2 lnSo
l=1

N
l

N2D , s8d

which reaches a well defined finite and positive value in the
limit lim N→`ScsNd=Su=sln 2d /2−1/4<0.0966. By virtue of
the fact thatScsNd is monotonically increasing with respect
to N, we have thatz;s5 ln 2−3 ln 3d /4=Scs2døScsNd.
SinceSmaxùScsNdùz⇒1/zù1/Smax, we can replaceSmax

in the relations7d by z.
We now consider that the functionfsxd=hx ln x∀x

P s0,1g ,0 if x=0j is a continuous function defined on the
compact setf0,1g, and hence it is uniformly continuous. This
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reflects thatfsxd is also bounded, and one can seef31g that
ufsxduø1/e. Moreover, uniform continuity implies that there
existsd1sed.0 so that for everyx,yP f0,1g

ux − yu , d1sed ⇒ ux ln x − y ln yu ,
ez

2
. s9d

Now the proof of the Lesche stability ofS proceeds as
follows. Indeed, for everye.0, we can considerdsed
=minfee /2 ,d1sedg so that if ip−p8i,dsed we have

USfpg − Sfp8g
Smax

U ø
1

z
Uo

k=1

N

spk − pk8d
k

N
ln

k

N
− x ln x + y ln yU

ø Uo
k=1

N spk − pk8d
z

k

N
ln

k

N
U +

ux ln x − y ln yu
z

,

s10d

where x=ok=1
N sk/Ndpk and y=ok=1

N sk/Ndpk8. We now take
into account that

ux − yu = Uo
k=1

N
k

N
spk − pk8dU ø o

k=1

N U k

N
Uupk − pk8u ø o

k=1

N

upk − pk8u

, dsed ø d1sed s11d

and thereforefsee conditions9dg

ux ln x − y ln yu
z

,
e

2
, s12d

the consideration of which turns inequalitys10d to sfor more
details seef31gd

USfpg − Sfp8g
Smax

U ,
1

z
o
k=1

N

upk − pk8uU k

N
ln

k

N
U +

e

2

ø
ok=1

N
upk − pk8u

ze
+

e

2
,

dsed
ze

+
e

2
ø e,

s13d

which completes the proof.
We now investigate theS value deduced upon analyzing

in the natural time domain the time series of SES activities
and AN obtained upon considering the time reversalT of the
original time series,Tpk=pN−k+1. This, for the sake of con-
venience, will be designated byS− sin contrast to theSvalue
which results from the analysis of the original time seriesd.
Table I presents theSandS− values of the SES activities and
AN investigated in Ref.f18g as well as of the signals de-
picted in Fig. 1sthe date as well as the station at which each
of the latter signals has been recorded can be found in Ref.
f31gd. For the sake of completeness, we also give in Table I
the value of the variancek1;kx2l−kxl2 obtained in each
casesnote thatk1 does not change upon time reversal—since
it results from a power spectrumf20g—in a similar fashion
as the exponents obtained from detrended fluctuation analy-
sis f32,33g sDFAd, and Hurst analysisf34g; see also belowd.
An inspection of this table reveals the following. Although
theS values are classified as stated above, i.e.,S,Su for the

SES activities andS'Su for AN, this does not hold, in gen-
eral, for theS− values. This is so, since for all the SES ac-
tivities swith the probable exception of K2d we find that the
S− values are smaller thansor equal tod Su, but for AN no
commonbehaviour could be found, becauseS− is either
smaller or larger thanSu. In other words, no distinction be-
tween SES activities and AN can be achieved on the basis of
S− values alone. This means the following, if we recall that
the S value takes into account the sequential order of pulses
and hence captures elements of the dynamics hidden in this
order f21,23g. Only when considering thestrued time arrow
si.e., analyzing in the natural time domain the time series as
it was actually recorded in natured can theS value pinpoint
the difference in the dynamics between these two groups of
electric signals. Recall that the SES activities are character-
ized bycritical dynamics and hence exhibit infinitely ranged
long range correlations, while in AN the intensity of the
long-range correlations is markedly weakerf18g. Numerical
studies ofcritical models do show that bothS and S− are
smaller thanSu and will be published elsewhere.

We now comment on the aforemenionted point that, in
contrast toS, the variancek1 as well as the generalized vari-
ancesDFA of the DFA technique or theR/S function sHurst
analysisd do not change upon time reversal. In other words,
only S does satisfy the condition to be “causal” in the fol-
lowing sense. When studying a dynamical system evolving

TABLE I. The values ofS, k1, S− for the SES activities and AN
analyzed in Ref.f18g as well as those depicted in Fig. 1.

Signal S k1 S−

K1 0.067±0.003a 0.063±0.003a 0.074±0.003

K2 0.081±0.003a 0.078±0.004a 0.103±0.003

A 0.070±0.008a 0.068±0.004a 0.084±0.008

U 0.092±0.004a 0.071±0.004a 0.071±0.004

T1 0.088±0.007 0.084±0.007 0.098±0.010

C1 0.083±0.004 0.074±0.002 0.080±0.004

P1 0.087±0.004 0.075±0.004 0.081±0.004

P2 0.088±0.003 0.071±0.005 0.072±0.015

E1 0.087±0.007 0.077±0.017 0.081±0.007

n1 0.143±0.003a 0.115±0.003a 0.127±0.004

n2 0.103±0.003a 0.093±0.003a 0.122±0.003

n3 0.117±0.010a 0.100±0.008a 0.118±0.010

n4 0.106±0.010a 0.100±0.013a 0.138±0.010

n5 0.091±0.011a 0.086±0.007a 0.120±0.011

n6 0.102±0.007a 0.084±0.004a 0.095±0.007

n7 0.116±0.005 0.085±0.005 0.083±0.005

n8 0.117±0.004 0.095±0.007 0.099±0.005

n9 0.110±0.010 0.091±0.005 0.095±0.010

n10 0.112±0.005 0.087±0.007 0.087±0.006

n11 0.122±0.012 0.088±0.007 0.079±0.012

n12 0.104±0.005 0.094±0.005 0.103±0.009

n13 0.124±0.007 0.084±0.007 0.077±0.008

n14 0.124±0.005 0.087±0.005 0.081±0.007

aFrom Ref.f18g.
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in time f35g, the “causality” of an operator describing this
evolution assures that the values assumed by the operator, at
each time instant, depend solely on the past values of the
system. This reflects that a “causal” operator is able to rep-
resent the evolution of the system according to thestrued
time arrow. The “causality” of an operator has the following
two consequences. First, the operator can represent a real
physical system evolving in time. Second, the operator can
reveal the differences arising upon time reveral of the series.
In order to overcome this “lack of causality” of DFA, an
alternative approach termed the detrending moving average
sDMA d has been suggestedf36g, motivated by an earlier
study f37g. The DMA has been defined in terms of a gener-
alized variance, analogously to the DFA, with the important
difference of being able to be operated “causally”si.e., in
real timed and continuouslyssince the time series does not

need an artifical subdivision into boxesd. The extent to which
the DMA, as well as a more recent approachf38g—
motivated by the DMA—that is based on the analysis of
clusters formed by the moving average of a long-range cor-
related time series, may reveal the differences arising in the
time series of the SES activities and AN due to time reveral
is currently under detailed investigation.

In summary, the entropySdoes exhibit positivity, concav-
ity, and Lesche stability. Interestingly, it also shows a break-
ing of the time-reversal symmetry and can classify similar
looking electric signals of different dynamicsonly when ana-
lyzing their originalsand not the time-reversedd time series.

Thanks are due to Professor Sumiyoshi Abe for drawing
our attention to the importance of proving theS concavity.
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